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Dimensionality

About dimensionality

In order to perform our task, we want to have as much information
as possible. . .

In general we want to have as many features as possible

Correlated features do not, together, convey as much
information as the sum of both features separately

Working in high dimensions causes difficulties:

We need exponential amounts of data to characterise the
density as the dimensionality goes up
Intuitions we have from low-dimensional spaces do not always
hold in higher dimensions
Often the data lies in a low dimensional manifold, embedded in
a high-dimensional space

This is often called the curse of dimensionality

It is hard to visualise high-dimensional data
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The Curse of Dimensionality

Curse of dimensionality

Example: Estimating densities with histograms

x1

D = 1
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The Curse of Dimensionality

Curse of dimensionality

Example: Estimating densities with histograms

x1

x2

D = 2
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The Curse of Dimensionality

Curse of dimensionality

Example: Estimating densities with histograms

x1

x2

x3

D = 3
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The Curse of Dimensionality

Embeddings in high-dimensional spaces

Example: Low-dimensional manifold in High-dim data

To illustrate, consider a 16× 16 image of a digit. A machine sees
this as a 256-dimensional vector. If we consider only rotations of
this digit, all images will lie on a one-dimensional manifold in a
256-dimensional space. If we consider translations and rotations,
the data is intrinsically 3D, in a 256D space.
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The Curse of Dimensionality

Dimensionality reduction

The purpose of dimensionality reduction is to project the data to a
low-dimensional space, while retaining the information present in
the data.

This is a form of lossy data compression

It can be useful to visualize the data

Learning machines working in the lower-dimensional space
may obtain better results with less training data, as we can
obtain better density estimates from the data in the
low-dimensional space.
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Principal Component Analysis

Dimensionality reduction by linear projection

Example
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Principal Component Analysis

Dimensionality reduction by linear projection
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Principal Component Analysis

Principal Component Analysis

PCA is probably the most well-known method for dimensionality
reduction.

Also known as the Karhunen-Loève transform

Orthogonal projection of the data into a lower-dimensional
subspace, so that the variance of the projected data is
maximised

Equivalently: linear projection that minimises the
mean-squared distance between data points and their
projection
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Principal Component Analysis

Maximising the projected variance

Consider projecting on u1, with unit length for convenience.

Each vector xn is then projected into u>
1 xn

Mean of the projected data equals the projected mean u>
1 x̄

To maximise the variance of the projected data, we maximise

1

N

N∑
n=1

(u>
1 xn − u>

1 x̄)2 = u>
1 Su1 (1)

where S is the data covariance

Using a Lagrange multiplier to constrain u>
1 u1 = 1, we get

L(x, λ) = u>
1 Su1 + λ1(1− u>

1 u1) (2)

resulting in Su1 = λu1. That is, u1 is an eigenvector of S and
the maximum is obtained for the largest eigenvalue.IASIntelligent Autonomous Systems
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Principal Component Analysis

About PCA

The maximal variance
does not always
correspond to optimal
class separation. Fisher’s
linear discriminant
includes class label
information in finding the
projection

PCA can be used to
normalise the dataset so
as to make different
dimensions decorrelated
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Principal Component Analysis

Principal Component Analysis

The additional principal components can be found by incrementally
selecting the eigenvectors with the largest eigenvalues.

To Summarise: Principal Component Analysis

1 Find the empirical mean of the data

2 Compute the covariance matrix

3 Perform eigenvector decomposition, and select sufficient
eigenvectors to preserve the chosen amount of variation in the
data
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Eigenfaces

One problem with this formulation of PCA is that the covariance
matrix becomes huge as the dimensionality of the data increases.

PCA is often used to represent pictures in a compact fashion.
A 256× 256 pixels image resolution results in a 65536× 65536
element covariance matrix (which requires 48GB to store)

However the number of non-zero eigenvectors is limited by the
number of data elements. We can reduce the computational
complexity.

The resulting computation of PCA has revolutionised the field
of face recognition in the 90’s.
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Eigenfaces

PCA on high-dimensional data

Define X where row n contains xn − x̄, then S = 1/N X>X so that
PCA is given by

1

N
X>Xui = λiui (3)

Now consider instead

1

N
XX>vi = λivi (4)

Premultiplying both sides by X> gives

1

N
X>XX>vi = λiX

>vi (5)

so that if vi is an eigenvector of the N × N matrix XX> with
eigenvalue λi , ui = X>vi is an eigenvector of the D × D matrix S
with eigenvalue λi
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Probabilistic PCA

Probabilistic PCA

Alternatively, PCA can be seen as a probabilistic model:

p(z) = N (z|0, I) (6)

p(x|z) = N (x|Wz + µ, σ2I) (7)

Generative view of PCA

z

p(z)

ẑ

x2

x1

µ

p(x|ẑ)

}
ẑ|w|

w
x2

x1

µ

p(x)
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Probabilistic PCA

Advantages of PPCA

The probabilistic formulation of PCA is equivalent with PCA, but
has several advantages:

We can use EM to optimise the model without ever explicitly
computing the covariance matrix

It is easy to combine multiple PCA models into a mixture of
PCA

The existence of the likelihood function allows direct
comparison of different models

The model can be sampled from to generate new data
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Probabilistic PCA

Example: Missing values

To illustrate, PPCA was applied twice to the same data, however
in the second case 30% of the values were removed and EM was
used to deal with the missing values.
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Factor Analysis

Factor Analysis

FA is very similar to PCA: the only difference is in the conditional
probability of the data:

p(x|z) = N (x|Wz + µ,Ψ) (8)

where Ψ is a diagonal matrix.

PCA vs. FA

PCA is sensitive to the scale of each feature, but is insensitive
to rotation of the dataset

FA is insensitive to the relative scale of the features, but is
sensitive to rotation
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Generative Topographic Mappings

Kernel PCA

We can define PCA in function of a kernel function, and solve the
eigenvalue problem

1

N
Kai = λiai (9)

This allows us to find much richer mappings than the direct
linear projection of PCA.

However Kernel PCA has the problem that we often want to
find projection directions using a training set, and find the
low-dimensional projections for new data. This is not possible
with Kernel PCA.

There are however techniques to find approximate projections
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Generative Topographic Mappings

Multidimensional Scaling

Instead of minimising the reconstruction error after projection, we
can do a linear projection of the data such as to preserve the
distances between data points as best as possible

If Euclidean distance is used, this is equivalent with PCA

However MDS is much more general and can be defined on
non-numerical data (for example: strings) using a similarity
measure

This is called non-metric MDS
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Generative Topographic Mappings

Isomaps

Isometric Feature Maps perform MDS on the data, using geodesic
distances between points.

For example, the distance between two points on a circle is
measured along the circumference, not the straight Euclidean
distance.

The geodesic distance between two points is approximated by
finding the closest points to each data point and computing
the sum of the distances between the points on the shortest
path connecting them.
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Generative Topographic Mappings

Generative Topographic Mappings

The GTM is a final model for dimensionality reduction:

p(z) =
1

K

K∑
i=1

δ(z− zi )

p(x|z) = N (x; y(z,w), σI)

It defines a discrete, typ. 2D, latent space of binary variables
and a continuous observed space

A non-linear mapping is found by linear regression

Using a discrete latent space allows us to compute the
marginal by summing over the latent variables

The model can then be optimised using EM
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Generative Topographic Mappings

Example: GTM vs PCA
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Piecewise Linear Modelling

Piecewise Linear Modelling

In order to model a nonlinear manifold, we can approximate the
structure through a combination of linear models.

Cluster the data using K-Means and apply PCA to each group

Better: Use the reconstruction error for cluster assignment

Better still: Use mixture of PPCA. This provides a full
probabilistic treatment and Bayesian treatment allows us to
find the number of components automatically

This can be extended to mixtures of factor analysers

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Introduction Linear Dimensionality Reduction Non-linear Dimensionality Reduction Wrap-up

Piecewise Linear Modelling

Locally Linear Embedding

As an extreme case, we can represent each data element as a linear
function of its K neighbours

xi =
K∑
j=1

wijxj

Optimise
∑

i |xi −
∑

j wijxj | to find wij .

Create a representation z in any dimensionality, by optimising

E (Z) =
∑
i

|zi −
∑
j

wijzj |
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Piecewise Linear Modelling

Locally Linear Embedding

Pros

Efficient for large datasets

Single parameter to tune (K )

Scale-invariant, rotation-invariant, translation-invariant

Cons

Not useful for representing future data, really

Can be unstable in sparse areas of dataset
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Independent Component Analysis

Independent component analysis

ICA views the D-dimensional observation as a linear combination
of N independent sources.

To illustrate this, imagine D microphones recording N people
speaking simultaneously (ignoring delays and considering only
the attenuation due to the distance between speaker and
microphone)

This is a form of blind source separation

This is only possible if we assume that the sources have
non-Gaussian distributions. Often, we assume

p(zj) =
1

πcosh(zj)
(10)
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Independent Component Analysis

Example: Typical ICA density function

N (x ; 0, 1)

1
π cosh(x)

x

p
(x

)
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Autoencoders

Autoassociative Neural Networks

Consider a 2-layer neural network, where we set the output values
to be equal to the input values. This is called an auto-encoder or
auto-associative Neural Network.

x1

xD

z1

zM

x1

xD

inputs outputs

By setting the number of hidden nodes to be less than the number
of inputs/outputs, we force the network to compress the data.
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Autoencoders

Autoassociative Neural Networks

In the case of a 2-layer network with linear activation functions and
minimizing the sum-squared-error, the network converges to PCA.

However even if we use non-linear activation functions, we still
obtain PCA with a 2-layer network

Increasing the number of layers allows the network to do
non-linear dimensionality reduction

x1

xD

x1

xD

inputs outputs

F1 F2

non-linear

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Introduction Linear Dimensionality Reduction Non-linear Dimensionality Reduction Wrap-up

Autoencoders

Dimensionality reduction with auto-encoders

x1

x2

x3

x1

x2

x3

z1

z2
F1

F2

S

The mapping done by the auto-encoder can be very general

Depending on the number of nodes in the intermediate layers,
extremely complex functional mappings are possible

However the optimisation problem is now non-convex — we
can easily end up with non-optimal solutions

Moreover, the dimensionality of the subspace must be defined
beforehand
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Restricted Boltzmann Machines

Restricted Boltzmann Machines

hj

xi

h

x

W

with three sets of parameters

The weights W , with Wij connecting node xi to hj

The biases a for the visible nodes
the biases b for the hidden nodes
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Restricted Boltzmann Machines

The Restricted Boltzmann Machine

We use undirected connections between each node of one layer and
all the nodes of the next layer. Therefore:

p (h|x) =
∏
j

p (hj |x) p (x |h) =
∏
i

p (xi |h) (11)

The log-likelihood is given by

− log P (x , h) = −b>x − a>h − h>Wx + const (12)

The log-likelihood cannot be optimised in closed form, but
nodes can be sampled from as:

p (xi |h) ∼ σ(bi +
∑
j

Wijhj) for binomial nodes (13)

p (xi |h) ∼ N (bi +
∑
j

Wijhj , 1) for continuous nodes (14)

p (xi |h) ∼ S{xi}[bi +
∑
j

Wijhj ] for multinomial nodes (15)
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Restricted Boltzmann Machines

Multiple Layers

We can use the RBM for non-linear dimensionality reduction:

Similar to the autoencoder, we try to
recover the original data

The inverse mapping is done by the same
nodes as the mapping, thus halving the
number of free parameters

This is a probabilistic model, and can
therefore easily be combined with other
probabilistic models

We can use a sampling algorithm called
contrastive divergence to optimise the
parameters, using each layer as input to
the next

h3

h2

h1

x

RBM
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Wrap-up

Summary

We’ve seen dimensionality reduction:

Principal Component Analysis (Bishop, p. 561-563, 569-570)

PPCA (Bishop, p. 570-573)

Factor analysis (Bishop, p. 583-586)

Kernel PCA (Bishop, p. 586-590)

Nonlinear models (Bishop, p. 591-598)
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