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Introduction

Last week, we have seen how the factorisation of probability
distributions could be represented as graphs.

We have seen algorithms to efficiently compute marginal
probabilities on such graphs.

We have seen how this could be used to compute conditional
probabilities.

However in we needed to assume that the parameters of the
distributions were known.

Today, we see how to learn these parameters efficiently.
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Learning the parameters

We want to find the parameters that maximise the likelihood

MAP treatment is very similar

(exact) full Bayesian treatment is often not tractable

We’ll see approximations in lecture 13

How can we find the maximum of the likelihood?

If everything is observed, it’s easy

If we have latent variables, it’s hard
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Fully observed model

Example
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Fully observed model

zn

xn

N

p(xi , zi ) =

{
p(C1) p(xi |C1) if zi = 1

p(C2) p(xi |C2) if zi = 0

Parametrisation:

p(C1) = π

p(C2) = 1− π
p(xi |C1) = N (xi ;µ1,Σ1)

p(xi |C2) = N (xi ;µ2,Σ2)

=⇒θ = {π,µ1,Σ1,µ2,Σ2}
(Complete) likelihood:

p(xi , zi |θ) =
[
p(C1) p(xi |C1)

]zi [p(C2) p(xi |C2)
]1−zi
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Parameter optimisation

Complete likelihood:

p({xi , zi}|θ) =
N∏
i=1

[
πN (xi ;µ1,Σ1)

]zi [(1− π)N (xi ;µ2,Σ2)
]1−zi

Maximise: take logarithm, set derivative = 0

π1 =

∑N
i=1 zi
N

π2 =

∑N
i=1(1− zi )

N

µ1 =

∑N
i=1 zi xi∑N
i=1 zi

µ2 =

∑N
i=1(1− zi ) xi∑N

i=1 zi

Σ1 =

∑N
i=1 zi xix

>
i∑N

i=1 zi
− µ1µ

>
1 Σ2 =

∑N
i=1(1− zi ) xix

>
i∑N

i=1 zi
− µ2µ

>
2
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Hidden class label

So, what happens when the class label is not observed?

List all possible assignments, pick best
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Problem description

Example: kMeans clustering

Cluster data in two groups in an unsupervised manner:

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Introduction Everything observed kMeans Clustering Mixtures of Gaussians The General EM Algorithm

Problem description

Properties of clustering

In order to cluster the data, we need:

Some representation of what a cluster looks like

Let’s assume for now that each cluster is fully defined by its
centre.

An assignment of each datapoint to one of the clusters

Let’s assume that this is defined by the Euclidean distance to
the clusters’ centres.

The best configuration is the one where all datapoints are as close
as possible to their cluster’s centre
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An algorithm

Optimising the clustering

An exhaustive search for the optimal clustering is intractable and
requires CN operations

Where C is the number of clusters

and N is the number of datapoints.

How do we find the optimal clustering without exhaustive search?
Solve the clustering iteratively:

Initialise the cluster means at random

Repeat until convergence
1 Assign each data point to the closest cluster mean
2 Update each cluster’s centre according to the associated data
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An algorithm

An iterative algorithm

Example: kMeans Clustering
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An algorithm

Problems with kMeans

There are some disadvantages to kMeans:

Euclidean distance:

Only useful for some types of data
Not robust to outliers
Sensitive to scaling of data
Solution: Other distance measures

Hard assignments At each iteration, each datapoint is
assigned to exactly one cluster, even for doubtful cases.
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An algorithm

k-means sensitivity to scaling

Example: kMeans Clustering
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Problem description

Mixtures of Gaussians

A mixture of Gaussians is a linear
combination of Gaussians:

p(x) =
K∑

k=1

πkN (x|µk ,Σk) (1)

where 0 6 πk 6 1 and

K∑
k=1

πk = 1 (2)
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Problem description

Alternative view of the mixture model

We introduce a binary random variable z in 1-of-K encoding,
the probability of z can be writen as

p(zk = 1) = πk so that p(z) =
K∏

k=1

πzkk

We choose the conditional distribution of x given a zk as

p(x|zk = 1) = N (x|µk ,Σk), so that

p(x|z) =
K∏

k=1

N (x|µk ,Σk)zk

Then we have:

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk ,Σk)

zn

xn

N
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Optimising the likelihood with latent variables

Optimising the likelihood

Similar to kMeans, finding the optimal parameters for p(x) in a
mixture of Gaussians is hard.
However, with our new representation, we can now work with
p(x, z) rather than p(x). In particular, consider the log-likelihood
of N datapoints XXX:

ln p(XXX|π,µ,Σ) =
N∑

n=1

ln

[
K∑

k=1

πkN (xn|µk ,Σk)

]
(3)

Setting the first derivative with respect to µk equal to zero, gives:

0 = −
N∑

n=1

πkN (xn|µk ,Σk)∑
` π`N (xn|µ`,Σ`)

Σ−1
k (xn − µk) (4)
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Optimising the likelihood with latent variables

Optimising the likelihood

Similar to kMeans, finding the optimal parameters for p(x) in a
mixture of Gaussians is hard.
However, with our new representation, we can now work with
p(x, z) rather than p(x). In particular, consider the log-likelihood
of N datapoints XXX:

ln p(XXX|π,µ,Σ) =
N∑

n=1

ln

[
K∑

k=1

πkN (xn|µk ,Σk)

]
(3)

Setting the first derivative with respect to µk equal to zero, gives:

0 = −
N∑

n=1

πkN (xn|µk ,Σk)∑
` π`N (xn|µ`,Σ`)︸ ︷︷ ︸

p(zk |xn)

Σ−1
k (xn − µk) (4)
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Optimising the likelihood with latent variables

Likelihood maximisation

The values for µk , Σk and πk that maximise the likelihood are:

πk =
Nk

N

µk =
1

Nk

N∑
n=1

p(zk |xn)xn

Σk =
1

Nk

N∑
n=1

p(zk |xn)(xn − µk)(xn − µk)>

where we defined Nk =
∑N

n=1 p(zk |xn)

However p(zk |xn) is a function of
π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK
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Optimising the likelihood with latent variables

The EM algorithm for Gaussian Mixtures

The Expectation-Maximisation algorithm is an iterative update
where:

E-step Compute the posterior probabilities of the latent
variables given the data and the current parameters
(also called responsibilities), p(zk |xn,θ)

M-step Optimise the expectation of the complete
log-likelihood with respect to the parameters

In practice, stop when the increase in likelihood falls below a
certain threshold.
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Optimising the likelihood with latent variables

Example: Mixtures of Gaussians
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Optimising the likelihood with latent variables

About EM for mixtures of Gaussians

Some things to notice

The problem is ill-posed: consider a component k with
covariance σI. If the mean of the component falls exactly on a
data point, its contribution to the likelihood is

ln p(xn|µk ,Σk) =
1√
2πσ

(5)

which, in the limit of σ → 0 goes to infinity.

A suitable prior on θ avoids this problem

The kMeans algorithm is equivalent with EM for a Gaussian
mixture model, where the covariance is σI for all mixture
components in the limit σ → 0.
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Optimising the likelihood with latent variables

Example
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Definitions

The General EM Algorithm

In general, the EM algorithm is defined as follows. Optimising the
complete log-likelihood

p(XXX,ZZZ|θ) (6)

would be easy, but we only observe XXX. So let’s optimise our best
estimate of the complete log-likelihood: the expectation of the
complete log-likelihood under our current parameter estimates θold :

Q(θ,θold) = Ep(ZZZ|XXX,θold )[ln p(XXX,ZZZ|θ)] (7)

=
∑

z

p(ZZZ|XXX,θ) ln p(XXX,ZZZ|θ) (8)
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Definitions

The E and M steps

In the E-step we evaluate the distribution of the latent
variables

p(ZZZ|XXX,θold) (9)

so that we can compute the expectation of the complete
log-likelihood (although we do not need to compute that
explicitly)

In the M-step we maximise the complete log-likelihood with
respect to θ

θnew ← arg max
θ

Q(θ,θold) (10)
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MAP learning with EM

EM for MAP learning

If we incorporate a prior over θ, p(θ), the EM algorithm changes
slightly:

E-Step : p(ZZZ|XXX,θold) does not depend on p(θold) since θold

are given, so the E-step remains identical.

M-Step : We now optimise

E [ln(p(XXX,ZZZ|θ)p(θ))] (11)

where p(θ) is constant with respect to p(ZZZ|XXX,θold),
so that we get:

θnew = arg max
θ

Q(θ,θold) + ln p(θ) (12)
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A closer look at the EM algorithm

Why EM works

Consider the log likelihood

`(θ) = ln p(XXX|θ) =
∑

z

ln p(ZZZ,XXX|θ) (13)

=
∑

z

ln[q(ZZZ)
p(XXX,ZZZ|θ)

q(ZZZ)
] (14)

>
∑

z

q(ZZZ) ln[
p(XXX,ZZZ|θ)

q(ZZZ)
] (15)

By Jensen’s inequality
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A closer look at the EM algorithm

Jensen’s inequality

f
(x

)

xa

f(a)

b

f(b)

λa+ (1− λ)b

λf(a) + (1 − λ)f(b)
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A closer look at the EM algorithm

Jensen’s inequality
f
(x

)

x
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A closer look at the EM algorithm

Jensen’s inequality

0 5

0

5

x ln x

− ln x
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A closer look at the EM algorithm

Mutual entropy

Consider the quantity∑
z

q(z) ln[
p(x, z|θ)

q(z)
]

=
∑

z

q(z) [ln p(z|x,θ) + ln p(x|θ)− ln q(z)]

=
∑

z

q(z) ln
p(z|x,θ)

q(z)
+ ln p(x|θ)

∑
z

q(z)︸ ︷︷ ︸
=1

so that

ln p(x|θ) =
∑

z

q(z) ln[
p(x, z|θ)

q(z)
]︸ ︷︷ ︸

L(q,θ)

+

(
−
∑

z

q(z) ln
p(z|x,θ)

q(z)

)
︸ ︷︷ ︸

KL(q||p)
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A closer look at the EM algorithm

E-Step

During the E-step, we maximise L(q,θ) with respect to q(z),
leaving θold untouched. Since `(θold) does not depend on q(z),
this can only be achieved by setting

KL(q||p) = 0

in other words

q(z) = p(z|x,θ)

so that

L(q,θold) = ln p(x|θold)

ln p(X|θold)L(q,θold)

KL(q||p) = 0
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A closer look at the EM algorithm

M-Step

During the M-step, we maximise L(q,θ) with respect to θ, leaving
q(z) untouched. Since q(x) = p(z|x,θold),

L(q,θ) =
∑

z

p(z|x,θ) ln p(z, x|θ)−
∑

z

p(z|x,θ) ln p(z|x,θ)

= Q(θ,θ) + H[q(z)]

Maximising L(q,θ) with
respect to θ changes
ln p(z|x,θ), so that
KL(q||p) increases.

p(x|θ) therefore increases
at least as much as
L(q,θ)

ln p(X|θnew)L(q,θnew)

KL(q||p)
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A closer look at the EM algorithm

EM vs. Gradient Descent
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Extensions to EM

Common extensions of EM

Sometimes, the following extensions of EM are used:

When the datapoints are independent, the responsibilities zn
depend on xn and θ only, so that the E and M step can be
computed online rather than in batch. This can converge
faster than the batch version.

Sometimes the E-step or M-step (or both) remain intractable.
Increasing the likelihood (rather than maximising it) still
guarantees increasing the likelihood. This is called Generalised
EM (GEM)
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Extensions to EM

Wrap-up

Today, we have seen:

Learning when we can do inference (Bishop, p. 439–441)

Examples of the EM algorithm (Bishop, p. 423–439)

A formal analysis of EM (Bishop, p. 450–453)

Compared k-means with mixtures of Gaussians

Lab:

Implement the EM algorithm for mixtures of Gaussians
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