Lecture 5
Graphical Models

University of Amsterdam
1 Introduction

2 Bayesian Networks
 - Independence
 - D-separation

3 Markov Random Fields
 - Independence properties
 - Factorisation

4 Factor Graphs
 - The basics
 - Conversions

5 Summing up
 - Graphical models as filters
 - Bayesian nets vs. Markov Random Fields vs. Factor Graphs

6 Inference
 - The sum-product algorithm
 - The max-sum algorithm
1 Introduction

2 Bayesian Networks
 - Independence
 - D-separation

3 Markov Random Fields
 - Independence properties
 - Factorisation

4 Factor Graphs
 - The basics
 - Conversions

5 Summing up
 - Graphical models as filters
 - Bayesian nets vs. Markov Random Fields vs. Factor Graphs

6 Inference
 - The sum-product algorithm
 - The max-sum algorithm
Probabilistic modelling

When given the joint probability distribution, we can answer any question about variables.

Example

If we know $p(A, B, C)$, we can answer questions such as $p(A|C)$, the probability that A should have a certain value if C is observed, using Bayes’ rule:

$$p(A|C) = \frac{p(A, C)}{p(C)}$$

where $p(A, C) = \int p(A, B, C) dB$ and $p(C) = \int\int p(A, B, C) dA dB$.
This requires **marginalisation**

- in general: exponential in number of variables
- computationally expensive or even intractable!
- complexity reduced if some variables are independent of others
- Graphical models provide a simple way to express independence
Probabilistic Graphical Models

Gained increasing popularity in Machine Learning because:

- They provide a simple way to visualise the structure of a probabilistic model and can be used to design and motivate new models.
- Insights into the property of the models can be obtained by inspection of the graph.
- Complex computations, required to perform inference and learning in sophisticated models, can be expressed in terms of graphical manipulations.
The basics

In a graphical model

- Random Variables are denoted as nodes, and they can be discrete or continuous
- Relations are denoted by edges (can be directed or undirected)
- Shaded nodes represent observed variables
- Plates represent repetition
The basics

In a graphical model

- Random Variables are denoted as nodes, and they can be discrete or continuous
- Relations are denoted by edges (can be directed or undirected)
- Shaded nodes represent observed variables
- Plates represent repetition
The basics

In a graphical model

- Random Variables are denoted as nodes, and they can be discrete or continuous
- Relations are denoted by edges (can be directed or undirected)
- Shaded nodes represent observed variables
- Plates represent repetition
The basics

In a graphical model

- Random Variables are denoted as nodes, and they can be discrete or continuous
- Relations are denoted by edges (can be directed or undirected)
- Shaded nodes represent observed variables
- Plates represent repetition

\[
\begin{align*}
T & \quad \rightarrow \\
& \quad A
\end{align*}
\]
The basics

In a graphical model
- Random Variables are denoted as nodes, and they can be discrete or continuous
- Relations are denoted by edges (can be directed or undirected)
- Shaded nodes represent observed variables
- Plates represent repetition
The basics

In a graphical model
- Random Variables are denoted as nodes, and they can be discrete or continuous
- Relations are denoted by edges (can be directed or undirected)
- Shaded nodes represent observed variables
- Plates represent repetition
The basics

In a graphical model

- Random Variables are denoted as nodes, and they can be discrete or continuous
- Relations are denoted by edges (can be directed or undirected)
- Shaded nodes represent observed variables
- Plates represent repetition

- The graphical model represents the factorisation of the joint distribution of the variables
- To use the model, we need to be able to do both learning and inference. In this lecture we focus on inference
1. Introduction

2. Bayesian Networks
 - Independence
 - D-separation

3. Markov Random Fields
 - Independence properties
 - Factorisation

4. Factor Graphs
 - The basics
 - Conversions

5. Summing up
 - Graphical models as filters
 - Bayesian nets vs. Markov Random Fields vs. Factor Graphs

6. Inference
 - The sum-product algorithm
 - The max-sum algorithm
Bayesian Networks

In this example we see nodes \(x = x_1 \ldots x_7 \).

- Their joint probability is
 \(p(x) = p(x_1, x_2, \ldots, x_7) \).

- The graph implies an explicit factorisation of this joint distribution
 \(p(x) = \prod_{k=1}^{7} p(x_k|\text{pa}(x_k)) \).

\[
p(x) = p(x_1) p(x_2) p(x_3) p(x_4|x_1, x_2, x_3) p(x_5|x_1, x_3) p(x_6|x_4) p(x_7|x_4, x_5)
\]
Bayesian Networks

Example Bayesian Network

- In this example we see nodes $x = x_1 \ldots x_7$
- Their joint probability is $p(x) = p(x_1, x_2, \ldots, x_7)$
- The graph implies an explicit factorisation of this joint distribution
- $p(x) = \prod_{k=1}^{7} p(x_k | pa(x_k))$

$p(x) = p(x_1) p(x_2) p(x_3) p(x_4 | x_1, x_2, x_3) p(x_5 | x_1, x_3) p(x_6 | x_4) p(x_7 | x_4, x_5)$
Factorisation

The full joint distribution can always be factorised as

\[p(x) = p(x_7|x_1, x_2, x_3, x_4, x_5, x_6) \cdot p(x_6|x_1, x_2, x_3, x_4, x_5) \cdot p(x_5|x_1, x_2, x_3, x_4) \cdot p(x_4|x_1, x_2, x_3) \cdot p(x_3|x_1, x_2) \cdot p(x_2|x_1) \cdot p(x_1) \]

for which we would need \(2^7 - 1\) parameters

\[p(x) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4|x_1, x_2, x_3) \cdot p(x_5|x_1, x_3) \cdot p(x_6|x_4) \cdot p(x_7|x_4, x_5) \]

requires just 21 parameters.

- Remember: keep the simplest hypothesis that explains the data “well enough”
- Thus, the missing edges are what matters!
The full joint distribution can always be factorised as

\[p(x) = p(x_7|x_1, x_2, x_3, x_4, x_5, x_6) \cdot p(x_6|x_1, x_2, x_3, x_4, x_5) \]
\[\cdot p(x_5|x_1, x_2, x_3, x_4) \cdot p(x_4|x_1, x_2, x_3) \]
\[\cdot p(x_3|x_1, x_2) \cdot p(x_2|x_1) \cdot p(x_1) \]

for which we would need \(2^7 - 1\) parameters

\[p(x) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4|x_1, x_2, x_3) \cdot p(x_5|x_1, x_3) \cdot p(x_6|x_4) \cdot p(x_7|x_4, x_5) \]

requires just 21 parameters.

- Remember: keep the simplest hypothesis that explains the data “well enough”

- Thus, the missing edges are what matters!
Factorisation

The full joint distribution can always be factorised as

\[p(x) = p(x_7|x_1, x_2, x_3, x_4, x_5, x_6) \cdot p(x_6|x_1, x_2, x_3, x_4, x_5) \]
\[\cdot p(x_5|x_1, x_2, x_3, x_4) \cdot p(x_4|x_1, x_2, x_3) \]
\[\cdot p(x_3|x_1, x_2) \cdot p(x_2|x_1) \cdot p(x_1) \]

for which we would need \(2^7 - 1\) parameters

\[p(x) = \underbrace{p(x_1)}_{1} \cdot \underbrace{p(x_2)}_{1} \cdot \underbrace{p(x_3)}_{1} \cdot \underbrace{p(x_4|x_1, x_2, x_3)}_{8} \cdot \underbrace{p(x_5|x_1, x_3)}_{4} \cdot \underbrace{p(x_6|x_4)}_{2} \cdot \underbrace{p(x_7|x_4, x_5)}_{4} \]

requires just 21 parameters.

- Remember: keep the simplest hypothesis that explains the data “well enough”
- Thus, the missing edges are what matters!
Independence

Two sets of random variables A and B are *independent* (denoted as $A \perp \!\!\!\!\perp B$) if and only if

$$p(A, B) = p(A)p(B) \tag{1}$$

- The variables in set A contain no information about those in set B. Learning the value(s) of variable(s) in set A, doesn’t change the probability distribution over the variables in set B.
- Imagine throwing two fair coins. Knowing that the first came heads, doesn’t change the distribution over the results of the second:

 $$ c_1 = H \quad c_1 = T $$
 $$ c_2 = H \quad 0.5 \quad 0.5 $$
 $$ c_2 = T \quad 0.5 \quad 0.5 $$

- From the product rule, eq. 1 implies that: $p(A|B) = p(A)$
- This provides no information about the *conditional* independence of variables.
Independence

Two sets of random variables A and B are independent (denoted as $A \perp \! \! \! \! \! \perp B$) if and only if

$$p(A, B) = p(A)p(B) \quad (1)$$

- The variables in set A contain no information about those in set B. Learning the value(s) of variable(s) in set A, doesn’t change the probability distribution over the variables in set B.

- Imagine throwing two fair coins. Knowing that the first came heads, doesn’t change the distribution over the results of the second:

 $$c_1 = H \quad c_1 = T$$

 $$c_2 = H \quad 0.5 \quad 0.5$$

 $$c_2 = T \quad 0.5 \quad 0.5$$

- From the product rule, eq. 1 implies that: $p(A|B) = p(A)$

 - This provides no information about the conditional independence of variables
Two sets of random variables A and B are \textit{independent} (denoted as $A \perp \!\!\!\!\perp B$) if and only if

$$p(A, B) = p(A)p(B) \quad (1)$$

- The variables in set A contain no information about those in set B. Learning the value(s) of variable(s) in set A, doesn’t change the probability distribution over the variables in set B.
- Imagine throwing two fair coins. Knowing that the first came heads, doesn’t change the distribution over the results of the second:

\[
\begin{array}{c|c|c}
 & c_1 = H & c_1 = T \\
\hline
 c_2 = H & 0.5 & 0.5 \\
 c_2 = T & 0.5 & 0.5 \\
\end{array}
\]

- From the product rule, eq. 1 implies that: $p(A|B) = p(A)$
- This provides no information about the \textbf{conditional} independence of variables
Conditional Independence

Two sets of random variables A and B are conditionally independent given a set C if and only if

$$p(A, B|C) = p(A|C) p(B|C)$$

Here, the variables of set A contain no information about those of set B when we know the values of all the variables of set C.

Imagine throwing two fair coins, given the value of a function f that indicates whether $c_1 = c_2$. Knowing that the first came heads, changes the distribution over the results of the second!

<table>
<thead>
<tr>
<th>f</th>
<th>c_1=H</th>
<th>c_1=T</th>
<th>f=1</th>
<th>c_1=H</th>
<th>c_1=T</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_2=H</td>
<td>0</td>
<td>1</td>
<td>c_2=H</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c_2=T</td>
<td>1</td>
<td>0</td>
<td>c_2=T</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Similarly, equation 2 implies that: $p(A|C) = p(A|B, C)$

This is no information regarding any marginal independence between A and B.

Intelligent Autonomous Systems
Conditional Independence

Two sets of random variables A and B are conditionally independent given a set C if and only if

$$p(A, B|C) = p(A|C)p(B|C)$$

(2)

- Here, the variables of set A contain no information about those of set B when we know the values of all the variables of set C.

- Imagine throwing two fair coins, given the value of a function f that indicates whether $c_1 = c_2$. Knowing that the first came heads, changes the distribution over the results of the second!

<table>
<thead>
<tr>
<th>$f=0$</th>
<th>$c_1=H$</th>
<th>$c_1=T$</th>
<th>$f=1$</th>
<th>$c_1=H$</th>
<th>$c_1=T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_2=H$</td>
<td>0</td>
<td>1</td>
<td>$c_2=H$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c_2=T$</td>
<td>1</td>
<td>0</td>
<td>$c_2=T$</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Similarly, equation 2 implies that: $p(A|C) = p(A|B, C)$

- This is no information regarding any marginal independence between A and B
Conditional Independence

Two sets of random variables A and B are conditionally independent given a set C if and only if

$$p(A, B|C) = p(A|C) \cdot p(B|C)$$

(2)

- Here, the variables of set A contain no information about those of set B when we know the values of all the variables of set C.

- Imagine throwing two fair coins, given the value of a function f that indicates whether $c_1 = c_2$. Knowing that the first came heads, changes the distribution over the results of the second!

<table>
<thead>
<tr>
<th>$f=0$</th>
<th>$c_1=H$</th>
<th>$c_1=T$</th>
<th>$f=1$</th>
<th>$c_1=H$</th>
<th>$c_1=T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_2=H$</td>
<td>0</td>
<td>1</td>
<td>$c_2=H$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c_2=T$</td>
<td>1</td>
<td>0</td>
<td>$c_2=T$</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Similarly, equation 2 implies that: $p(A|C) = p(A|B, C)$

- This is no information regarding any marginal independence between A and B
Enter college

Example

- Consider two characteristics of a person. Being smart, denoted by binary variable S, and being an athlete, denoted by binary variable A.
- Let’s assume that 40% of the population is smart, and 10% of the population is an athlete.
- Furthermore, let’s denote the fact that someone entered college with the binary variable C. If you are smart you have higher chances of entering college as well as if you are an athlete. Let’s say these probabilities are:

$$
\begin{array}{c|cc}
 & A = a & A = \neg a \\
\hline
 S = s & 0.91 & 0.90 \\
 S = \neg s & 0.90 & 0.04 \\
\end{array}
$$

- How would this graphical model look, and what would the factorisation imply?
Entering college

Example

\[p(C, A, S) = p(C|A, S) \cdot p(A) \cdot p(S) \]

- What is the probability that an athlete is smart?
- What is the probability that a smart person is an athlete?
- Does this probability change if we meet this person in our college class?
Entering college

Example

\[p(C, A, S) = p(C|A, S) p(A) p(S) \]

- What is the probability that an athlete is smart? \[0.4\]
- What is the probability that a smart person is an athlete?
- Does this probability change if we meet this person in our college class?
Bayesian Networks
Markov Random Fields
Factor Graphs
Summing up
Inference

Independence

Entering college

Example

\[p(C, A, S) = p(C|A, S) p(A) p(S) \]

- What is the probability that an athlete is smart? \(0.4\)
- What is the probability that a smart person is an athlete? \(p(A|S) = 0.1\)
- Does this probability change if we meet this person in our college class?
Entering college

Example

\[p(C, A, S) = p(C|A, S) p(A) p(S) \]

1. What is the probability that an athlete is smart? \(0.4\)
2. What is the probability that a smart person is an athlete? \(p(A|S) = 0.1\)
3. Does this probability change if we meet this person in our college class? \(p(A|S, C) \approx 0.1\)
Explaining away: an extreme example

Example

You want to pick up your bike which you locked close to central station. At central station, there are two reasons why bikes sometimes disappear:

1. It can be stolen
2. It can be vandalised, and the remnants cleaned up.

Let’s assume that $p(\text{gone} | \text{vandalised}) = 1$.

Questions:

- What is $p(\text{gone} | \text{stolen})$?
- If you notice your bike is gone, what happens to the probability that it was vandalised?
- What about $p(\text{stolen} | \text{gone})$?
- Now suppose you learn that it was stolen. What happens to $p(\text{vandalised} | \text{gone}, \text{stolen})$?
Explaining away: an extreme example

Example

You want to pick up your bike which you locked close to central station. At central station, there are two reasons why bikes sometimes disappear:

1. It can be stolen
2. It can be vandalised, and the remnants cleaned up.

Let’s assume that $p(\text{gone}|\text{vandalised}) = 1$.

Questions:

- What is $p(\text{gone}|\text{stolen})$?

$p(\text{gone}|\text{stolen}) = 1$

- If you notice your bike is gone, what happens to the probability that it was vandalised?

- What about $p(\text{stolen}|\text{gone})$?

- Now suppose you learn that it was stolen. What happens to $p(\text{vandalised}|\text{gone, stolen})$?
Explaining away: an extreme example

Example

You want to pick up your bike which you locked close to central station. At central station, there are two reasons why bikes sometimes disappear:

1. It can be stolen
2. It can be vandalised, and the remnants cleaned up.

Let’s assume that $p(\text{gone}|\text{vandalised}) = 1$.

Questions:

- What is $p(\text{gone}|\text{stolen})$?

 $p(\text{gone}|\text{stolen}) = 1$

- If you notice your bike is gone, what happens to the probability that it was vandalised?

 increases

- What about $p(\text{stolen}|\text{gone})$?

- Now suppose you learn that it was stolen. What happens to $p(\text{vandalised}|\text{gone, stolen})$?
Explaining away: an extreme example

Example

You want to pick up your bike which you locked close to central station. At central station, there are two reasons why bikes sometimes disappear:

1. It can be stolen
2. It can be vandalised, and the remnants cleaned up.

Let’s assume that $p(\text{gone} | \text{vandalised}) = 1$.

Questions:

- What is $p(\text{gone} | \text{stolen})$? $p(\text{gone} | \text{stolen}) = 1$
- If you notice your bike is gone, what happens to the probability that it was vandalised? increases
- What about $p(\text{stolen} | \text{gone})$? also increases
- Now suppose you learn that it was stolen. What happens to $p(\text{vandalised} | \text{gone}, \text{stolen})$?
Explaining away: an extreme example

Example

You want to pick up your bike which you locked close to central station. At central station, there are two reasons why bikes sometimes disappear:

1. It can be stolen
2. It can be vandalised, and the remnants cleaned up.

Let’s assume that \(p(\text{gone}|\text{vandalised}) = 1 \).

Questions:

- What is \(p(\text{gone}|\text{stolen}) \)? \(p(\text{gone}|\text{stolen}) = 1 \)
- If you notice your bike is gone, what happens to the probability that it was vandalised? increases
- What about \(p(\text{stolen}|\text{gone}) \)? also increases
- Now suppose you learn that it was stolen. What happens to \(p(\text{vandalised}|\text{gone, stolen}) \)? decreases
Detecting (conditional) independencies in the factorisation of a joint distribution is not easy.

- Independence of nodes in a graph can be found mechanically by operations on the graph.
- For the set of nodes A, B and C,

$$A \perp \perp B \mid C$$ if all the paths from A to B are blocked.

- A path is blocked at a node when (d-separation)
 - edges meet head-to-tail ($\rightarrow\bigcirc\rightarrow$) or tail-to-tail ($\leftarrow\bigcirc\rightarrow$) at a node which is in the observed set C,
 - edges meet head-to-head ($\rightarrow\bigcirc\leftarrow$) at a node which is not in C, and none of whose descendents is in the observed set C.
D-separation

A path is blocked at a node when (D-separation)

- edges meet head-to-tail (→〇→) or tail-to-tail (←〇→) in an observed node,

- edges meet head-to-head (→〇←) and the node nor any of its descendents is observed.
The Markov blanket of a node x_i:

- minimal set of nodes that “shield” the node x_i from the rest of the graph
- Set of nodes, given which x_i is independent from any other node in the graph
- For directed graphical models: set of parents, children and co-parents of the node
BayesNet Toolbox example

Example illustrating D-separation
Introduction

2 Bayesian Networks
 • Independence
 • D-separation

3 Markov Random Fields
 • Independence properties
 • Factorisation

4 Factor Graphs
 • The basics
 • Conversions

5 Summing up
 • Graphical models as filters
 • Bayesian nets vs. Markov Random Fields vs. Factor Graphs

6 Inference
 • The sum-product algorithm
 • The max-sum algorithm
The Basics

- Undirected graphical models are also known as Markov Random Fields or Markov networks.
- Each node corresponds to a variable or a group of variables.
- Edges denote relationships between variables.
Independence in MRFs

- We start by the independences a MRF represents, because they are easy to define.
- Once more, for the set of nodes A, B and C, $A \perp \perp B \mid C$ if all the paths from A to B are blocked.
- A path from A to B is blocked when one of the path nodes belongs to set C.
Independence in MRFs

An example where $A \perp B \mid C$ in an undirected graph
The Markov blanket of a (set of) nodes:

- Minimal set of nodes given which the nodes are independent of the rest of the graph
- No “explaining away”
- Markov blanket: set of neighbouring nodes
In this example we see nodes \(x = x_1, \ldots, x_4 \).

Independence between two nodes \(x_i \) and \(x_j \) corresponds to:

\[
p(x_i, x_j | x_{\setminus i,j}) = p(x_i | x_{\setminus i,j})p(x_j | x_{\setminus i,j})
\]

where \(x_{\setminus i,j} \) represents all the nodes in \(x \) except \(x_i \) and \(x_j \).

- **Clique** is a subset of a graph such that there exists a link between all pairs of nodes of the graph.
- **Maximal Clique** is a subset of a graph such that no other node can be added without it ceasing to be a clique.
The joint distribution of all the graph nodes can be written as a product of potential functions, each associated with a clique

\[p(x) = \frac{1}{Z} \prod_C \psi_C(x_C) \]

where \(x_C \) are the nodes of the subset of clique \(C \), and \(Z \) the normalisation constant, usually called partition function, given by:

\[Z = \sum_x \prod_C \psi_C(x_C) \]
Potential Functions

- They are non-negative
- They do not require a specific probabilistic interpretation
- That’s why we need an explicit normalisation term, which is sometimes *intractable* to compute!
- Comparison of different variable settings is easy
- Objective evaluation of a particular setting hard
Image Denoising

Example

- We represent the problem of image denoising with an undirected graphical model. Nodes y_i represent observed pixel values, while nodes x_i represent the unknowns and are the true pixel value in a noise-free image.
- Which are the maximal cliques of this model?
Energy Function

Example

- The nodes are binary and can take values -1 or $+1$
- We set η as the potential of each clique $\{x_i, y_i\}$
- We set β as the potential of each clique $\{x_i, x_j\}$
- We use h to bias the model towards pixel values of a specific sign

Energy function:

$$E(x, y) = h \sum_i x_i - \beta \sum_{\{i, j\}} x_i x_j - \eta \sum_i x_i y_j$$

Potentials:

$$p(x, y) = \frac{1}{Z} \exp(h \sum_i x_i - \beta \sum_{\{i, j\}} x_i x_j - \eta \sum_i x_i y_j)$$

$$= \frac{1}{Z} \psi_1(x)^h \psi_2(x)^{-\beta} \psi_3(x, y)^{-\eta}$$
Energy Function

Example

- The nodes are binary and can take values -1 or $+1$
- We set η as the potential of each clique $\{x_i, y_i\}$
- We set β as the potential of each clique $\{x_i, x_j\}$
- We use h to bias the model towards pixel values of a specific sign
- Energy function:

$$E(x, y) = h \sum_i x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_i x_i y_j$$

- Potentials:

$$p(x, y) = \frac{1}{Z} \exp(h \sum_i x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_i x_i y_j)$$

$$= \frac{1}{Z} \psi_1(x)^h \psi_2(x)^{-\beta} \psi_3(x, y)^{-\eta}$$
Energy Function

Example

- The nodes are binary and can take values -1 or $+1$
- We set η as the potential of each clique $\{x_i, y_i\}$
- We set β as the potential of each clique $\{x_i, x_j\}$
- We use h to bias the model towards pixel values of a specific sign
- Energy function:

$$E(x, y) = h \sum_i x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_i x_i y_j$$

- Potentials:

$$p(x, y) = \frac{1}{Z} \exp(h \sum_i x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_i x_i y_j)$$

$$= \frac{1}{Z} \psi_1(x)^h \psi_2(x)^{-\beta} \psi_3(x, y)^{-\eta}$$
Example: Iterated conditional modes

- We would like to infer the value of the variables x_i.
- We initially set $x_i = y_i$
- We observe each variable independently
- We change its value if this would increase the total configuration probability
 - We stop once we have iterated over all the variables without any value change
 - This will converge to a *local* optimum in the configuration space
Example: Iterated conditional modes

- We would like to infer the value of the variables x_i.
- We initially set $x_i = y_i$
- We observe each variable independently
- We change its value if this would increase the total configuration probability
- We stop once we have iterated over all the variables without any value change
- This will converge to a *local* optimum in the configuration space
Example: Iterated conditional modes

- We would like to infer the value of the variables x_i.
- We initially set $x_i = y_i$
- We observe each variable independently
- We change its value if this would increase the total configuration probability
- We stop once we have iterated over all the variables without any value change
- This will converge to a local optimum in the configuration space
1. Introduction

2. Bayesian Networks
 - Independence
 - D-separation

3. Markov Random Fields
 - Independence properties
 - Factorisation

4. Factor Graphs
 - The basics
 - Conversions

5. Summing up
 - Graphical models as filters
 - Bayesian nets vs. Markov Random Fields vs. Factor Graphs

6. Inference
 - The sum-product algorithm
 - The max-sum algorithm
A factor graph

- In this example we see nodes $\mathbf{x} = x_1, \ldots, x_3$
- The joint distribution will be factored as:

$$p(x_1, x_2, x_3) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$$

- Which of these factors would be grouped together in an undirected graph?
- Does this provide more or less expressive power?
Undirected to Factor graph

Example

\[x_1 \quad x_2 \quad x_3 \]

\[x_1 \quad f \quad x_2 \]

\[x_1 \quad f_a \quad x_2 \]

\[x_1 \quad f_b \quad x_2 \]

Intelligent Autonomous Systems
Directed to Factor graph

Example

\[
\begin{align*}
\mathbf{x}_1 & \quad \mathbf{x}_2 & \quad \mathbf{x}_3 \\
\mathbf{x}_1 & \quad \mathbf{f} & \quad \mathbf{x}_2 \\
\mathbf{x}_1 & \quad \mathbf{f}_c & \quad \mathbf{x}_2 \\
\end{align*}
\]
<table>
<thead>
<tr>
<th>1. Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Bayesian Networks</td>
</tr>
<tr>
<td>● Independence</td>
</tr>
<tr>
<td>● D-separation</td>
</tr>
<tr>
<td>3. Markov Random Fields</td>
</tr>
<tr>
<td>● Independence properties</td>
</tr>
<tr>
<td>● Factorisation</td>
</tr>
<tr>
<td>4. Factor Graphs</td>
</tr>
<tr>
<td>● The basics</td>
</tr>
<tr>
<td>● Conversions</td>
</tr>
<tr>
<td>5. Summing up</td>
</tr>
<tr>
<td>● Graphical models as filters</td>
</tr>
<tr>
<td>● Bayesian nets vs. Markov Random Fields vs. Factor Graphs</td>
</tr>
<tr>
<td>6. Inference</td>
</tr>
<tr>
<td>● The sum-product algorithm</td>
</tr>
<tr>
<td>● The max-sum algorithm</td>
</tr>
</tbody>
</table>
Graphical models as filters

- Let \(p(x) \) be the set of all possible distributions over the variables at hand.
- Each graphical model is a filter for these distributions.
- Allowing only distributions that satisfy the appropriate factorisations go through.
Some factorisations can be expressed with a directed or undirected graph

Some can only be expressed with one of the two conventions

The factor graphs can express any kind of factorisation
1. Introduction

2. Bayesian Networks
 - Independence
 - D-separation

3. Markov Random Fields
 - Independence properties
 - Factorisation

4. Factor Graphs
 - The basics
 - Conversions

5. Summing up
 - Graphical models as filters
 - Bayesian nets vs. Markov Random Fields vs. Factor Graphs

6. Inference
 - The sum-product algorithm
 - The max-sum algorithm
The sum-product algorithm

- evaluates the local marginals over nodes or sets of nodes
- will be presented for discrete nodes. In the continuous case the sums become integrals
- is a more general case of an algorithm known as belief propagation
- is applicable on trees
Independence to simplify inference

If our variables are binary, the marginal $p(B)$ is:

$$p(B) = p(a, B, c) + p(a, B, \neg c) + p(\neg a, B, c) + p(\neg a, B, \neg c)$$

However, from our factorisation, we can simplify this as:

$$p(B) = p(a) p(B|a) [p(c|B) + p(\neg c|B)] + p(\neg a) p(B|\neg a) [p(c|B) + p(\neg c|B)]$$

$$= [p(a) p(B|a) + p(\neg a) p(B|\neg a)] [p(c|B) + p(\neg c|B)]$$

where we used that $(ab + ac) = a(b + c)$
The sum-product algorithm

Estimating $p(x)$

From the rules of probability

$$p(x) = \sum_{x \setminus x} p(x)$$

which under a factor graph becomes

$$p(x) = \sum_{x \setminus x} \prod_{s} f_s(x_s) = \sum_{x \setminus x} \prod_{s \in \text{ne}(x)} F_s(x, X_s)$$ (3)

where $\text{ne}(x)$ are the set of factor nodes that are neighbours of x

Essentially, we would like to explore the structure of the graph to

- obtain and efficient exact algorithm to obtain marginals
- in case we need several marginals, share the computations efficiently
We can substitute sums and products in eq 3:

\[
p(x) = \prod_{s \in \text{ne}(x)} \left[\sum_{X_s} F_s(x, X_s) \right] = \prod_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x)
\]

where \(\mu_{f_s \rightarrow x}(x) \) can be viewed as a message from the factor node \(f_s \) to the variable \(x \).
Each message $\mu_{f_s \rightarrow x}(x)$ can be evaluated as:

$$\mu_{f_s \rightarrow x}(x) = \sum_{X_s} F_s(x, X_s)$$ \hspace{1cm} (4)

Each factor $F_s(x, X_s)$ is described by a new factor (sub-)graph where:

$$F_s(x, X_s) = f_s(x, x_1, x_2, \ldots, x_M) G_1(x_1, X_{s_1}) \cdots G_M(x_M, X_{s_M})$$ \hspace{1cm} (5)

where $x_1 \ldots x_M$ denote all the variables associated with f_x but x.
Substituting equation 5 in 4, we obtain:

\[
\mu_{f_s \to x}(x) = \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \left[\sum_{X_{sm}} G_m(x_m, X_{sm}) \right]
\]

\[
= \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)
\]

where \(\mu_{x_m \to f_s}(x_m)\) can be viewed as a message from the variable \(x\) to the factor nodes \(f_s\)
In this case, $\mu_{x_m \rightarrow f_s}(x_m)$ is given by

$$
\mu_{x_m \rightarrow f_s}(x_m) = \sum_{x_{sm}} G_m(x_m, X_{sm}) \quad (6)
$$

with

$$
G_m(x_m, X_{sm}) = \prod_{l \in \text{ne}(x_m) \setminus f_s} F_l(x_m, X_{ml})
$$

If we substitute this in 6, we get

$$
\mu_{x_m \rightarrow f_s}(x_m) = \prod_{l \in \text{ne}(x_m) \setminus f_s} \left[\sum_{x_{sm}} F_l(x_m, X_{ml}) \right] \\
= \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \rightarrow x_m}(x_m)
$$
The algorithm

- We see node x whose marginal we are after as the root of a tree.
- We start with messages from the leaves of the tree, 1 for nodes, $f(x)$ for factors.
- We compute the marginal when node x receives all the incoming messages.
Example: Going to class

A Attending class
B Broken Bike
C Consumption (of local products)
D Despair (about succeeding for the class)
Example: Going to class

Probabilities:

\[p(a|b, c) = 0 \quad p(b) = \frac{1}{12} \]
\[p(a|b, \neg c) = \frac{1}{4} \quad p(c) = \frac{1}{3} \]
\[p(a|\neg b, c) = \frac{1}{2} \quad p(d|a) = 0 \]
\[p(a|\neg b, \neg c) = 1 \quad p(d|\neg a) = \frac{3}{4} \]
The sum-product algorithm

Example: Going to class

\[f_a(B) = p(B) \]
\[f_b(C) = p(C) \]
\[f_c(A, B, C) = p(A|B, C) \]
\[f_d(A, D) = p(D|A) \]
Example: Going to class

\[\mu_1(D) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]

\[\mu_2(B) = \begin{bmatrix} p(b) \\ p(\neg b) \end{bmatrix} = \begin{bmatrix} \frac{1}{12} \\ \frac{11}{12} \end{bmatrix} \]

\[\mu_3(C) = \begin{bmatrix} p(c) \\ p(\neg c) \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix} \]
The sum-product algorithm

Example: Going to class

\[
\begin{align*}
\mu_4(A) &= \begin{bmatrix} 1p(d|a) + 1p(\neg d|a) \\ 1p(d|\neg a) + 1p(\neg d|\neg a) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\
\mu_5(B) &= \begin{bmatrix} p(b) \\ p(\neg b) \end{bmatrix} = \begin{bmatrix} \frac{1}{12} \\ \frac{11}{12} \end{bmatrix} \\
\mu_6(C) &= \begin{bmatrix} p(c) \\ p(\neg c) \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}
\end{align*}
\]
Example: Going to class

\[\mu_7(A) = \begin{bmatrix} p(b)p(c)p(a|b, c) + \cdots + p(\neg b)p(\neg c)p(a|\neg b, \neg c) \\ p(b)p(c)p(\neg a|b, c) + \cdots + p(\neg b)p(\neg c)p(\neg a|\neg b, \neg c) \end{bmatrix} \]

\[= \begin{bmatrix} \frac{1}{12} \frac{1}{3} 1 + \frac{1}{12} \frac{2}{3} 4 + \frac{11}{12} \frac{1}{3} 2 + \frac{11}{12} \frac{2}{3} 1 \\ \frac{1}{12} \frac{1}{3} 1 + \frac{1}{12} \frac{2}{3} 4 + \frac{11}{12} \frac{1}{3} 2 + \frac{11}{12} \frac{2}{3} 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{144} + \frac{22}{144} + \frac{88}{144} \\ \frac{4}{144} + \frac{6}{144} + \frac{22}{144} \end{bmatrix} = \begin{bmatrix} \frac{112}{144} \\ \frac{32}{144} \end{bmatrix} \]

\[= \begin{bmatrix} \frac{7}{9} \\ \frac{2}{9} \end{bmatrix} = \begin{bmatrix} p(a) \\ p(\neg a) \end{bmatrix} \]
Example: Going to class

We can now compute the marginal probability at A:

$$\mu_4(A)\mu_7(A) = \begin{bmatrix} 1 & p(a) \\ 1 & p(\neg a) \end{bmatrix} = \begin{bmatrix} \frac{7}{9} \\ \frac{2}{9} \end{bmatrix}$$
Example: Going to class

\[\mu_1(D) = \frac{1}{1} \]
\[\mu_4(A) = \frac{1}{1} \]
\[\mu_5(B) = \frac{1}{1} \]
\[\mu_6(C) = \frac{1}{1} \]
\[\mu_7(A) = \frac{1}{1} \]
\[\mu_8(A) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]
\[\mu_9(A) = \begin{bmatrix} p(a) \\ p(\neg a) \end{bmatrix} = \begin{bmatrix} 7/9 \\ 2/9 \end{bmatrix} \]
Example: Going to class

\[\mu_{10}(D) = \begin{bmatrix} p(a) p(d|a) + p(\neg a) p(d|\neg a) \\ p(a) p(\neg d|a) + p(\neg a) p(\neg d|\neg a) \end{bmatrix} = \begin{bmatrix} p(d) \\ p(\neg d) \end{bmatrix} = \begin{bmatrix} \frac{7}{9} + \frac{2}{9} \\ \frac{1}{9} + \frac{4}{9} \end{bmatrix} = \begin{bmatrix} \frac{1}{6} \\ \frac{1}{6} \end{bmatrix} \]

\[\mu_{11}(B) = \begin{bmatrix} p(a|b, c)p(c) + \cdots + p(\neg a|b, \neg c)p(\neg c) \\ p(a|\neg b, c)p(c) + \cdots + p(\neg a|\neg b, \neg c)p(\neg c) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mu_{12}(C) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]
Marginal over all nodes

- We can run the algorithm for each node independently
- In order to save time on computations we can have a full run over the whole factor graph
The max-sum algorithm

The most likely state of the system is not necessarily the state where all variables have their most likely state.

- We would like to acquire the most probable variable settings combination for our model.
- What would we acquire if we run the sum-product algorithm for each node of the graph, and set its value to

\[x^* = \arg \max_x p(x) \]

- The max-sum algorithm estimates the node values that \textit{jointly} have the highest probability! That is:

\[x^* = \arg \max_x p(x) \]
Maximising $p(x)$

We first write out the max operator in terms of its components:

$$\max_x p(x) = \max_{x_1} \max_{x_2} p(x) \cdot \max_{x_2} p(x) \cdots \max_{x_M} p(x)$$

which, given the factorisation provided by the factor graph and exchanging max operators and products becomes:

$$\max_x p(x) = \frac{1}{Z} \max_{x_1} \prod_{s \in \text{ne}(x_1)} F_s(x_1, X_s) \cdots \max_{x_M} \prod_{s \in \text{ne}(x_M)} F_s(x_M, X_s)$$

with all the terms having similar form to the sum-product algorithm.
max-sum messages

The messages to find the value of a node at the optimal joint configuration are:

\[\mu_{f \rightarrow x} = \max_{x_1, x_2, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f}(x_m) \right] \]

where

\[\mu_{x \rightarrow f}(x) = \sum_{l \in \text{ne}(x) \setminus f} \mu_{f_l \rightarrow x}(x) \]

Note the use of the logarithm to avoid computations with extremely small values! The products turn into sums, but the maximum remains.
The max-sum algorithm

With initialisations:

$$
\mu_{x \rightarrow f}(x) = 0 \text{ and } \mu_{f \rightarrow x}(x) = \ln f(x)
$$

at the root node we can compute the maximum probability as:

$$
p^{\text{max}} = \max_x \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right]
$$

and the node's value as:

$$
x^{\text{max}} = \arg \max_x \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right]
$$
Obtaining x^{max} is not straightforward!

If we just propagate messages back, individual x^* might correspond to different configuration values.

Instead we save these values as

$$
\phi(x_n) = \arg \max_{x_{n-1}} \left[\ln f_{n-1,n}(x_{n-1}, x_n) + \mu_{x_{n-1} \rightarrow f_{n-1,n}} (x) \right]
$$

and then, when we have reached the root node

$$
x_{n-1}^{\text{max}} = \phi(x_{n}^{\text{max}})
$$
Incorporating evidence

How can we incorporate observations in the computation?

- The sum-product algorithm marginalises over all nodes in the graph.
- The sum is taken over all possible values for each variable.
- In order to include observations (Evidence), we want to compute the factors for the observed values only.
- Include an extra factor to the observed variables, that is one for the observed value and zero otherwise.
Graphical models provide a simple way to visualise the structure of a probabilistic model and complex computations can be expressed in terms of graphical manipulations.

We saw a general algorithm to perform inference in factor graphs

Reading: Bishop chapter 8 (8.1.(1,2,4), 8.4.(1,2))

Stay tuned, next week we will see how to learn the parameters of our Graphical Model!