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Probabilistic Modelling Parameter learning Decision making Information Theory

Features

Features: recapitulation

A feature Xi : a certain type of observation or measurement

A particular value of Xi (instantiation) is denoted xi

Example

Iris example: petal length, sepal length, . . .

Measurement (sample) vector x = (X1 = x1, . . . ,Xd = xd)>

describes measurements of d features during an experiment

Simplified notation: x = (x1, . . . , xd)>

By measuring x1, . . . , xd of a vector x, we draw a sample

Feature space: The set of all possible measurements

In continuous domains, a d-dimensional vector is a point in a
d-dimensional Euclidean space Rd
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Probabilistic Modelling Parameter learning Decision making Information Theory

Features

Example: Iris classification
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Probabilistic Modelling Parameter learning Decision making Information Theory

Features

Probabilistic Modelling

We are interested in how random variables are informative of each
other. This can be got from the joint probability of random
variables:

p(X = x ,Y = y , . . . ), (1)

which we will generally write more compactly as

p(x , y , . . . ) (2)

Example

The probability that an iris should be an iris versicolor, have petals
of 3cm and sepals of 5cm length, p(C = C2,X = 3,Y = 5).
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Probabilistic Modelling Parameter learning Decision making Information Theory

Features

Marginalisation

This allows us to answer questions such as “What is the probability
of seeing a particular value of x, if I don’t know anything else?”
(marginal probability)

p(x) =

∫
p(x , y)dy (3)

or, in the case of discrete (categorical) variables

p(x) =
∑
y

p(x , y) (4)

Example

What is the probability that an iris should be an “iris versicolor”?
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Probabilistic Modelling Parameter learning Decision making Information Theory

Features

Conditional probability

What is the probability of seeing a particular value for y , if x is
known? (conditional probability)

p(y |x) =
p(x , y)

p(x)
(5)

where p(x) can be obtained by marginalisation.

Example

The probability that an Iris should be an Iris Versicolor and have
petals of 3cm, given that its sepals are 5cm long.
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Probabilistic Modelling Parameter learning Decision making Information Theory

Features

Class-Conditional Probability

The conditional probability distribution p(x|Ck ,θ) specifies with
what probability we can draw a particular sample x given the state
of the system Ck .

We refer to the parameters of the distribution as θ

Example

The probability that a flower will have 3cm long petals and 5cm
long sepals if it’s an Iris Versicolor.
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Probabilistic Modelling Parameter learning Decision making Information Theory

Features

Likelihood

We consider that our measurements are i.i.d., so that the total
probability of all data points is

p(XXX, ttt|θ) =
N∏
i=1

p(x(i), t(i)|θ) (6)

In machine learning, this quantity is often considered as a function
of the parameters θ, since the data is fixed anyway. It is then
called the likelihood.

p(XXX, ttt|θ) = `(θ) (7)

and the log-likelihood is

log p(XXX, ttt|θ) = L(θ) =
N∑
i=1

log p(x(i), t(i)|θ) (8)
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Probabilistic Modelling Parameter learning Decision making Information Theory

Features

Probabilistic Modelling

Extending this to larger numbers of variables, and allowing some
variables to never be observed (latent or hidden variables) makes
this very powerful.
The learning process is reduced to finding a description of the joint
probability distribution

Histogram-based non-parametric model

Functional representation parametric model
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Probabilistic Modelling Parameter learning Decision making Information Theory

Features

Naive Bayes

Naive Bayes: Assume all data dimensions are independent given
the class

p(x|C) = p(x1|C) · · · p(xN |C)

=
∏
i

p(xi |C)

Features:

Scales linearly in the number of features

Overly confident is features are not independent

Performs surprisingly well in practice

Beware: nothing Bayesian about Naive Bayes

Notice: conditional independence 6= marginal independence

p(x1, . . . , xn) =
∑
C

p(x1|C) · · · p(xN |C)p(C) 6= p(x1) · · · p(xN)

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Probabilistic Modelling Parameter learning Decision making Information Theory

Features

Naive Bayes

Naive Bayes: Assume all data dimensions are independent given
the class

p(x|C) = p(x1|C) · · · p(xN |C)

=
∏
i

p(xi |C)

Features:

Scales linearly in the number of features

Overly confident is features are not independent

Performs surprisingly well in practice

Beware: nothing Bayesian about Naive Bayes

Notice: conditional independence 6= marginal independence

p(x1, . . . , xn) =
∑
C

p(x1|C) · · · p(xN |C)p(C) 6= p(x1) · · · p(xN)

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Probabilistic Modelling Parameter learning Decision making Information Theory

The normal distribution

Maximising entropy

Entropy is a measure of information content:

Most informative description: maximal entropy

Most informative PDF with parameters
mean and variance:

Gaussian distribution

Using a Gaussian distribution basically means “I know mean
and variance, and nothing more”

Argument for why models based on Gaussian are successful
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Probabilistic Modelling Parameter learning Decision making Information Theory

The normal distribution

The Gaussian or Normal distribution

N (x ;µ, σ) =
1√
2πσ

exp−(x − µ)2

2σ2
(9)

0

0.4

-5σ -4σ -3σ -2σ -σ µ +σ +2σ +3σ +4σ +5σ
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Probabilistic Modelling Parameter learning Decision making Information Theory

The normal distribution

The Gaussian or Normal distribution

N (x;µ,Σ) =
1

(2π)d/1|Σ|1/2 exp−1

2
(x− µ)>Σ−1(x− µ) (10)

µ
µ

0

0.2
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Probabilistic Modelling Parameter learning Decision making Information Theory

The normal distribution

Central Limit Theorem

The central limit theorem can informally be stated as follows:

The Central Limit Theorem

The sum of a sufficiently large number of independent,
identically distributed variables with finite variance will
have an approximately Gaussian distribution.

Notice that no assumption is made about the distribution of these
variables
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Probabilistic Modelling Parameter learning Decision making Information Theory

The normal distribution

Gaussian: Ease of manipulation

Other reason for using the Gaussian: ease of use.

The sum of normally distributed variables is normally
distributed

The product of two normal distributions is a normal
distribution

The convolution of two normal distributions is a normal
distribution
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Probabilistic Modelling Parameter learning Decision making Information Theory

Maximum Likelihood

Maximum Likelihood learning

Find the parameters that maximise the likelihood function

Results in a simple optimisation

Prone to overfitting

Regularisation is generally required

Limiting model complexity
Weight decay or parameter shrinkage
Laplace smoothing
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Probabilistic Modelling Parameter learning Decision making Information Theory

Maximum a Posteriori

Maximum A Posteriori (MAP) learning

Instead of learning the parameters that maximise the likelihood,
why not learn the most likely parameters? Using Bayes’ rule, we
have:

p(θ|x) =
p(x|θ)p(θ)∫

p(x)dθ
(11)

This requires us to place a prior over the parameter values

Any prior is possible, choose prior to reflect prior knowledge

If we use a Gaussian distribution with zero mean, this is
equivalent to ML learning with parameter shrinkage

The denominator is often intractable to compute but is
constant, so that

arg max
θ

p(x|θ)p(θ)∫
p(x)dθ

= arg max
θ

p(x|θ)p(θ) (12)
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Probabilistic Modelling Parameter learning Decision making Information Theory

Bayesian learning

The Bayesian approach
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Bayesian learning

The Bayesian approach
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Bayesian learning
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Bayesian learning
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Probabilistic Modelling Parameter learning Decision making Information Theory

Bayesian learning

The Bayesian approach

In fact, we’re not really interested in knowing the original
distribution that “generated” the data

We’ll never know that anyway

What we really want to do, is to use the knowledge that we have
in an optimal way. That is, we want

p(t|x,XXX, ttt) =

∫
p(t|x,θ)p(θ|XXX, ttt)dθ (13)

In effect, we consider all the models (of the form that we have
chosen beforehand) that could have generated the data, and weigh
their prediction according to how probable they are.
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Probabilistic Modelling Parameter learning Decision making Information Theory

Decision threshold

Decision threshold

Classification: obtain a feature vector x and predict the
corresponding class C
Example

Given an X-ray image, predict the health state of the person

Bayesian decision rule: assign an observation x to class Ci if

p(Ci |x) > p(Cj |x) ∀j 6= i (14)
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Probabilistic Modelling Parameter learning Decision making Information Theory

Decision threshold

Minimising the misclassification rate

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x
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Probabilistic Modelling Parameter learning Decision making Information Theory

Decision threshold

Minimising the misclassification rate

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

From Bayes’ rule, we have that

p(Ck |x) =
p(x|Ck)p(Ck)∑
j p(x|Ck)p(Ck)

(15)

We want to minimise the probability of a mistake,
that is:

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1) (16)

=

∫
R1

p(x, C2)dx +

∫
R2

p(x, C1) (17)

Since p(x, Ck) = p(Ck |x)p(x) and p(x) is the same

in both terms, p(mistake) is minimal if each point

x is assigned to the class for which p(Ck |x) is
largest.
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Probabilistic Modelling Parameter learning Decision making Information Theory

Decision threshold

Minimising the misclassification rate

x̂

x

x0

x

p(C1|x)

p(C2|x)
R1 R2

p(x, C1)
p(x, C2)

· · · · · ·

p
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Decision threshold
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Decision threshold
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Decision threshold

Minimising the misclassification rate
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Probabilistic Modelling Parameter learning Decision making Information Theory

Decision threshold

Reject option

In some cases, the posterior probability p(Ck |x) of the most likely
class may be far less than one.

The regions where this is the case lead to most
misclassifications

In some cases it is better to avoid making a decision when that is
the case, in order to improve the performance on the examples for
which a decision is made.

Example

In medical image classification, it may be suitable to automatically
classify images for which we are very confident and leave the
difficult cases for a human to evaluate.
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Probabilistic Modelling Parameter learning Decision making Information Theory

Decision threshold

The reject option

Achieved by choosing a threshold, θ, and rejecting datapoints for
which the largest p(Ck |x) 6 θ.

x

p(C1|x) p(C2|x)

0.0

1.0
θ

reject region
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Probabilistic Modelling Parameter learning Decision making Information Theory

Decision threshold

Minimising the expected loss

In the case of unbalanced misclassification costs: loss matrix

Cancer classification example

L =

(
0 1000
1 0

)
(18)

The expected loss is then given by

E[L] =
∑
k

∑
j

∫
Rj

Lkjp(x, Ck)dx (19)

which is minimised by assigning each datapoint x to the class j for
which ∑

k

Lkjp(Ck |x) (20)
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Probabilistic Modelling Parameter learning Decision making Information Theory

Entropy

Measuring information

Information can be viewed as the “degree of surprise” on learning
the value of a random variable. It can be quantified by considering:

If we learn two unrelated (independent) random variables, the
amount of information obtained should be the sum of the
information gained by learning one of them.

h(x , y) = h(x) + h(y) (21)

From the probability of independent variables
p(x , y) = p(x)p(y) we have

h(x) ∝ log p(x) (22)

From this we get
h(x) = − log2 p(x) (23)
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Probabilistic Modelling Parameter learning Decision making Information Theory

Entropy

Entropy

Now suppose you transmit the value of a random variable. The
average amount of information transmitted is given by

H[x ] = Ep(x)[h(x)] = −
∑
x

p(x) log2 p(x) (24)

This is called the entropy of x . For continuous variables, this
becomes the differential entropy:

H[x ] = −
∫
x
p(x) log2 p(x) (25)

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Probabilistic Modelling Parameter learning Decision making Information Theory

Entropy

Properties of entropy

The basis of the logarithm is arbitrary
Result differs by constant factor
log2 −→ bits
ln −→ “nats”

Entropy: lower bound on number of bits needed to transmit
the value of a random variable (noiseless coding theorem)

Discrete variables: maximal entropy if all possible states have
the same probability

Lagrange multiplier

L =
∑
i

p(xi ) ln p(xi ) + λ(
∑
i

p(xi )− 1) (26)

⇒
{

ln p(xi ) + p(xi )
p(xi )

+ λ = 0∑
i p(xi ) = 1

(27)

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Probabilistic Modelling Parameter learning Decision making Information Theory

Entropy

Properties of entropy

The basis of the logarithm is arbitrary
Result differs by constant factor
log2 −→ bits
ln −→ “nats”

Entropy: lower bound on number of bits needed to transmit
the value of a random variable (noiseless coding theorem)

Discrete variables: maximal entropy if all possible states have
the same probability

Lagrange multiplier

L =
∑
i

p(xi ) ln p(xi ) + λ(
∑
i

p(xi )− 1) (26)

⇒
{

ln p(xi ) + p(xi )
p(xi )

+ λ = 0∑
i p(xi ) = 1

(27)

IASIntelligent Autonomous Systems

U
N

IV
E

R
S

IT
Y
 O

F
A

M
S

T
E

R
D

A
M



Probabilistic Modelling Parameter learning Decision making Information Theory

Entropy

Entropy of a Bernoulli distribution

µ = 0

0

1

0 0.5 1
µ

0

1

p
(x
)

True False
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Entropy

Entropy of a Bernoulli distribution

µ = 0.25

0

1

0 0.5 1
µ

0

1

p
(x
)

True False
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Entropy

Entropy of a Bernoulli distribution

µ = 0.5

0

1

0 0.5 1
µ

0

1

p
(x
)

True False
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Entropy

Entropy of a Bernoulli distribution

µ = 0.75

0

1

0 0.5 1
µ

0

1

p
(x
)

True False
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Entropy

Entropy of a Bernoulli distribution

µ = 1

0

1

0 0.5 1
µ

0

1

p
(x
)

True False
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Probabilistic Modelling Parameter learning Decision making Information Theory

Entropy

Mutual Entropy

Consider two random variables, x and y. If x is known, the
additional information needed to specify y is given by

h(y|x) = − ln p(y|x) (28)

So that the average additional information needed to specify y is

H[y|x] = −
∫∫

p(x, y) ln p(y|x)dydx (29)

so that
H[x, y] = H[y|x] + H[x] (30)
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Entropy



Probabilistic Modelling Parameter learning Decision making Information Theory

KL Divergence

KL Divergence

Consider a random variable, x, with unknown distribution p(x). If
we approximate this with q(x) and use this distribution to transmit
the value of x, the additional (wasted) information used (in nats) is

KL(p||q) = −
∫

p(x) ln q(x)dx−
(
−
∫

p(x) ln p(x)dx)

)
(31)

= −
∫

p(x) ln

(
q(x)

p(x)

)
dx (32)

This is the relative entropy or Kullback-Leibler divergence between
p(x) and q(x).
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KL Divergence

Properties

Measure of difference between probability distributions

Not a metric:

KL(p||q) 6≡ KL(q||p) (33)

Basis for approximations

Minimising KL(p||q) or KL(q||p) leads to different
approximations
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KL Divergence

KL Divergence is positive

Convex function: y = − ln x

0 5
−2

2

λf (a) + (1− λ)f (b)
>

f (λa+ (1− λ)b)

a b

f (a)

f (b)
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KL Divergence

KL Divergence is positive (II)

In general

∑
i

λi f (xi ) > f

(∑
i

λixi

)
where

∑
i

λi = 1 (34)

This is known as Jensen’s inequality. If we take λi to be
probabilities:

E[f (x)] > f (E[x ]) (35)

for any convex function f (x). For KL-divergence:

−
∫

p(x) ln

[
q(x)

p(x)

]
dx > − ln

∫
p(x)

[
q(x)

p(x)

]
dx = ln 1 = 0 (36)
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KL Divergence

Mutual Information

Now imagine the distribution of p(x, y). If the variables are
independent,

p(x, y) = p(x)p(y). (37)

If they are not independent, we can compute how “close” they are
to being independent:

I[x, y] ≡ KL(p(x, y)||p(x)p(y)) (38)

= −
∫

p(x, y) ln

(
p(x)p(y)

p(x, y)

)
dxdy (39)

This is the mutual information between x and y.

I[x, y] = H[x]− H[x|y] = H[y]− H[y|x] (40)
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Probabilistic Modelling Parameter learning Decision making Information Theory

KL Divergence

Wrap up

Today, we saw:

Probabilistic modelling

How to learn model parameters (Bishop, p. 28–31)

How to make decision based on the model (Bishop, p. 38–42)

Entropy, Conditional Entropy (Bishop, p. 48–52,54)

KL Divergence, Mutual Information (Bishop, p. 55,57)

Coming up:

Lagrange multipliers
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